Поддержать команду Зеркала
Беларусы на войне
  1. Помните школьницу из Кобрина, победа которой на олимпиаде по немецкому возмутила некоторых беларусов? Узнали, что было дальше
  2. «Мне отказано в назначении». Женщина проработала 30 лет, но осталась без трудовой пенсии — почему так произошло
  3. В сюжете госканала у политзаключенного была странная бирка на плече. Узнали, что это и для чего
  4. По госТВ рассказали, как задержали экс-калиновца Максима Ралько. Похоже, он сам вернулся в Беларусь
  5. МВД изменило порядок сдачи экзаменов на водительские права. Что нового?
  6. У культового американского музыканта, получившего Нобелевскую премию, нашли беларусские корни
  7. ВСУ нанесли удар по важнейшему для России заводу. Рассказываем, что он производит
  8. Хоккейное «Динамо-Минск» сотворило главную сенсацию в своей истории. Рассказываем, что произошло
  9. Первого убитого закопали в землю еще живым. Рассказываем о крупнейшей беларусской банде
  10. Погибший в Брестском районе при взрыве боеприпаса подросток совершил одну из самых распространенных ошибок. Что именно произошло
  11. Умер беларусский актер и режиссер Максим Сохарь. Ему было 44 года


Исследователи из Северо-Западного университета в США продемонстрировали новый способ выработки электричества с помощью устройства, погружаемого в «грязь». Мягкий прибор размером с книгу закапывается в почву и собирает энергию, вырабатываемую микробами, пишет «Хайтек».

Конструкция почвенного топливного элемента. Изображение: Northwestern University
Конструкция почвенного топливного элемента. Изображение: Northwestern University

Концепция микробных топливных элементов существует достаточно давно. Они используют бактерии, которые отдают электроны близлежащим проводникам, поедая почву. Основная проблема с практической реализацией этой идеи заключалась в том, чтобы снабжать устройство и бактерии водой и кислородом, пока они закопаны в грязь.

Инженеры разработали конструкцию в форме картриджа, расположенного вертикально на горизонтальном диске. Анод из углеродного фетра в форме горизонтального диска находится в нижней части устройства. Он закопан глубоко в почву и может захватывать электроны, пока микробы переваривают грязь. А проводящий металлический катод располагается вертикально поверх анода.

В предложенной конструкции нижняя часть погружена достаточно глубоко, чтобы иметь доступ к влаге из глубокой почвы, а верхняя находится на одном уровне с поверхностью. По всей длине электрода проходит зазор для свежего воздуха, а защитный колпачок предотвращает попадание грязи и мусора и перекрытие доступа катода к кислороду. Часть катода также покрыта гидроизоляционным материалом, поэтому при затоплении остается гидрофобная часть катода, контактирующая с кислородом, поддерживающая работу топливного элемента.

Топливный элемент до использования (слева) и погруженный в почву с бактериями (справа). Фото: Bill Yen / Northwestern University
Топливный элемент до использования (слева) и погруженный в почву с бактериями (справа). Фото: Bill Yen / Northwestern University

В ходе испытаний эта конструкция стабильно работала при различных уровнях влажности почвы: от экстремально влажной до «относительно сухой» — с содержанием воды всего 41% по объему. В среднем этот источник генерировал примерно в 68 раз больше энергии, чем требовалось для работы установленных датчиков для обнаружения влаги и прикосновения, а также для передачи данных через крошечную антенну на ближайшую базовую станцию.

Устройство можно использовать в качестве экологического источника электричества для датчиков, устанавливаемых на фермах или экологических станциях наблюдения. Энергии не хватит для зарядки смартфона или тем более электромобиля, но несколько датчиков будут работать без необходимости регулярно менять батарейки.